If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+12p-72=0
a = 1; b = 12; c = -72;
Δ = b2-4ac
Δ = 122-4·1·(-72)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{3}}{2*1}=\frac{-12-12\sqrt{3}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{3}}{2*1}=\frac{-12+12\sqrt{3}}{2} $
| 37+x=2(7+x) | | 35+18w-5w^2=0 | | 5w-47=-3(w+5) | | xX2=x+5=x-(-5)=10 | | 4x+4.2x-5=0 | | x+2=2x-7=11 | | 5^y+8=25 | | -4(a+11)-4a=-12 | | 9/10=n/100 | | 3x+9/6=x-2 | | 2=3c-8c-8 | | -2x-2(x+6)=36 | | 1/11m=4 | | X=20+0.25x | | 8(u−89)=40 | | -28=-4(c-9)-4c | | -35=2(s-10)-17 | | 30(3x-4)=30-5x | | -35=2(s-10-17 | | 8(q-12)=-56 | | -70=8(q+2)-14 | | x²+7x-13=0 | | -4=s-11/3 | | 3(u−60)=36 | | 140=3^t | | -4=a-11/3 | | f5−88=97 | | 8-0.2x=2+0.1x | | -6(a-4)=12 | | 0.2x=0.1x | | 5(5+t)-19=-49 | | x+2(x-3)=31 |